If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+35x-990=0
a = 5; b = 35; c = -990;
Δ = b2-4ac
Δ = 352-4·5·(-990)
Δ = 21025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21025}=145$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-145}{2*5}=\frac{-180}{10} =-18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+145}{2*5}=\frac{110}{10} =11 $
| 2x+2.40=7.60 | | -5x^2+35x-990=0 | | 7x^2-4,5x+1=0 | | -49=6(x-6) | | -x^2-8x-24=0 | | 6,5x^2+8x+3,5=0 | | Y/7+y-4/3=2 | | 4x^2+80x+144=0 | | 6x+5=9x+3 | | 3.6y=1.6=24 | | 5w+9=2w+9 | | 36+f=45 | | F=2-3g | | Y=4E+0.6x | | p-66=102 | | 6x-39=-21 | | (2-x)/(3-x)=1/2 | | 2x÷3x=18 | | 12(x-2)=4(x-22) | | (x–50)/15=1,28 | | (x0–50)/15=1.28 | | 3x+24/4=9 | | -30=5(x-9)x= | | (w+4)^2=2w^2+4w+19 | | (20x-17)+97=180 | | (15x-7)+72=95 | | (-3x+143)+119=180 | | -2x^2+5x+(x+1)^2-11=0 | | (x+5)^2=5x+26+5x | | (4x+112)+56=180 | | 7x+44=114 | | 5x+44=69 |